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REPORT

Efficient Association Mapping of Quantitative Trait Loci
with Selective Genotyping
B. E. Huang and D. Y. Lin

Selective genotyping (i.e., genotyping only those individuals with extreme phenotypes) can greatly improve the power
to detect and map quantitative trait loci in genetic association studies. Because selection depends on the phenotype, the
resulting data cannot be properly analyzed by standard statistical methods. We provide appropriate likelihoods for
assessing the effects of genotypes and haplotypes on quantitative traits under selective-genotyping designs. We demon-
strate that the likelihood-based methods are highly effective in identifying causal variants and are substantially more
powerful than existing methods.
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Mapping genes associated with quantitative traits is an im-
portant step toward genetic dissection of complex human
diseases. Because the disease genes are unlikely to have
very large effects on quantitative traits, power is a major
concern in association studies, especially with the need
to adjust for multiple testing. Despite the continuing im-
provements in genotyping efficiency, it is still highly ex-
pensive to genotype a large number of individuals, par-
ticularly in genomewide association studies. A cost-ef-
fective strategy is to preferentially genotype individuals
whose trait values deviate from the population mean.
Known as “selective genotyping,” this approach can result
in a substantial increase in power (relative to random sam-
pling with the same number of individuals), because much
of the genetic information resides in individuals with ex-
treme phenotypes.1–7

Slatkin2 suggested genotyping a selected sample of in-
dividuals with unusually high values of the quantitative
trait, together with a random sample from the study pop-
ulation. Because selection depends on the phenotype, stan-
dard statistical methods that assume random sampling are
not applicable. Slatkin2 developed two tests: one compar-
ing the allele frequencies between the selected sample and
the random sample and one comparing the mean trait
values among individuals with different genotypes in the
selected sample. The two tests are approximately indepen-
dent, so their P values can be combined to form an overall
test. Slatkin2 used simulation to show that his tests are
more powerful than the simple t test (when the latter is
applied to a random sample with the same number of
individuals). Chen et al.5 recommended replacement of
the random sample with a selected sample of individuals
with unusually low trait values and described two sam-
pling schemes to obtain the selected samples. They dem-
onstrated through a simulation study that, with Slatkin’s

three tests, their designs are more efficient than Slatkin’s
original design.

In a recent Science report on obesity,8 one of the repli-
cation studies genotyped individuals from the 90th–97th
percentile of the BMI distribution and those from the 5th–
12th percentile, and another replication study genotyped
individuals from the top and bottom quartiles. In both
studies, the individuals with high and low BMI values were
treated as cases and controls, respectively, and case-control
methods (i.e., testing for allele-frequency differences be-
tween the two selected groups) were used for analysis.

Case-control methods disregard the actual trait values
and are thus inefficient. Slatkin’s tests2 do not make full
use of the available data either—individuals who are ho-
mozygous for the minor allele are discarded, and the trait
values in the random sample or the low-trait-value sample
are not used at all. Recently, in this journal, Wallace et
al.7 proposed a Hotelling’s test for normal traits, which2T
they showed through simulation has increased power over
Slatkin’s tests.2 Wallace et al.’s test,7 which is essentially
the standard t test in the case of a single marker, ignores
the biased sampling nature of the selective-genotyping de-
sign and thus may not be optimal. Furthermore, none of
the existing methods deals with haplotype-based testing
or estimation of genetic effects.

In this report, we show how to properly and efficiently
map QTLs with selective genotyping. We derive appropri-
ate likelihoods that make full use of the available data and
that properly reflect trait-dependent sampling. The cor-
responding inference procedures are valid and efficient.
Our methods can be used to perform both genotype-based
and haplotype-based association analyses. Their advan-
tages over the existing methods are demonstrated through
extensive simulation studies.

We consider two very general selective-genotyping de-
signs. Under design 1, the quantitative trait is measured
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on a random sample of N individuals from the study pop-
ulation, and a subset of n individuals is selected for geno-
typing; the selection probabilities depend on the trait val-
ues. Under design 2, a random sample of n individuals
whose trait values fall into certain regions is selected for
genotyping, and the trait values are retained for only those
individuals. Thus, the main difference between the two
designs is that the trait values on those individuals who
are not selected for genotyping are retained under design
1 but not under design 2. Under design 2, it is not nec-
essary to specify N or to ascertain the individuals outside
the selection regions.

Let be the trait value of the ith individual and beY Gi i

the corresponding multilocus genotype denoting the num-
ber of minor alleles at each SNP site. The association be-
tween and is characterized by the conditional densityG Yi i

function indexed by a set of parameters v. InP(Y FG ;v)i i

the special case of a single locus with the additive mode
of inheritance, may take the familiar form ofP(Y FG ;v)i i

the linear regression model

Y p a � bG � e , (1)i i i

where is zero-mean normal with variance . In this case,2e ji

. Under the dominant (or recessive) mode of2v p (a,b,j )
inheritance, in equation (1) is replaced by the indicatorGi

of whether the ith individual has at least one minor allele
(or, for the recessive model, two minor alleles). If there
are multiple loci, then in equation (1) is replaced bybGi

an appropriate linear combination of individual genotype
scores and (possibly) their cross-products. We denote the
probability function of the genotype by , where gP(G;g)
represents the (multilocus) genotype frequencies.

Under design 1, the data consist of(Y ,G )(i p 1,…,n)i i

and . (Without loss of generality, theY (i p n � 1,…,N)i

data are arranged so that the first n records pertain to the
n individuals who are selected for genotyping and the
remaining records to the unselected individuals.)(N � n)
The corresponding likelihood for v and g can be written
as

n N

P(Y FG ;v)P(G ;g) P(Y FG;v)P(G;g) , (2)� � �i i i i
ip1 ipn�1 G

where the summation over G is taken over all possible
genotypes; a derivation is given in appendix A.

Under design 2, the data consist only of

(Y ,G )(i p 1,…,n) ,i i

which are a random sample from all the individuals whose

trait values belong to a particular set . We can use theC
likelihood for v and g,

n n
P(Y FG ;v)P(G ;g)i i iP(Y ,G FY � C) p , (3)� �i i i

ip1 ip1 �P(Y � CFG;v)P(G;g)i
G

or the likelihood for v,

n n
P(Y FG ;v)i iP(Y FG ,Y � C) p . (4)� �i i i

ip1 ip1 P(Y � CFG ;v)i i

If only the individuals whose trait values are less than the
lower threshold or larger than the upper thresholdc cL U

are selected for genotyping, then, under equation (1),

c � a � bG c � a � bGU i L iP(Y � CFG ;v) p 1 � F � F ,i i ( ) ( )j j

where F is the cumulative distribution function of the
standard normal distribution.

We refer to expression (2) as the full likelihood and to
equations (3) and (4) as the conditional likelihoods. These
likelihoods properly reflect the selective-genotyping de-
signs and use all the available data. Note that expression
(2) is the same as the likelihood for a prospective study
of size N in which genotype data are missing on N � n
individuals. Under design 1, one may disregard the trait
values of those individuals who are not selected for ge-
notyping and use the conditional likelihoods, provided
that the genotyped individuals are a random sample from
set . The maximum-likelihood estimators can be obtainedC
by the standard Newton-Raphson algorithm. As shown in
appendix A, the maximizations of equations (3) and (4)
yield the same estimator of v. By the likelihood theory,
the maximum-likelihood estimators are approximately un-
biased, normally distributed, and statistically efficient. As-
sociation testing can be performed by using the familiar
likelihood-ratio, score, or Wald statistics.

The above description pertains to the analysis of geno-
type-phenotype association. It is also desirable to assess
haplotype-phenotype association.9–10 Let denote the dip-Hi

lotype of the ith individual. The effects of haplotypes on
the trait are characterized by the conditional density func-
tion indexed by a set of parameters v. If we areP(Y FH ;v)i i

interested in assessing the effect of a particular haplotype
, then may take the form∗h P(Y FH ;v)i i

Y p a � bZ(H ) � e , (5)i i i

where is the number of occurrences of in under∗Z(H ) h Hi i

the additive mode of inheritance, the indicator of whether
contains at least one under the dominant mode of∗H hi

inheritance, and the indicator of whether contains twoHi

copies of under the recessive mode of inheritance. One∗h
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Table 1. Bias, SE, Average SEE, Coverage Probability of 95% CI (CP), and Power at the .05 Nominal Significance Level at
a Candidate Locus Under Additive (A) and Dominant (D) Models with MAFs of .05 and Recessive (R) Model with MAF of .2

Model, b,
and cL cU

Full Likelihood Conditional Likelihood Prospective Likelihood
CC

PowerBias SE SEE CP Power Bias SE SEE CP Power Bias SE SEE CP Power

A:
0:
�.5 .5 .001 .12 .12 95.3 5.0 .001 .12 .12 95.2 5.0 .002 .18 .18 95.0 4.9 5.1
�1.0 1.0 .001 .09 .09 95.3 5.0 .001 .09 .09 95.3 5.0 .003 .23 .23 95.0 5.0 5.0
�1.5 .5 .009 .12 .12 95.4 5.1 .010 .12 .12 95.2 5.1 .001 .19 .19 95.0 4.9 4.5
�2.0 1.0 .014 .11 .11 95.8 5.3 .015 .12 .11 95.6 5.3 .002 .20 .20 95.2 4.8 5.0
.2:
�.5 .5 .001 .12 .12 95.0 40.9 .003 .12 .12 95.0 40.9 .111 .18 .18 91.1 40.6 34.7
�1.0 1.0 .003 .10 .10 95.0 59.0 .004 .10 .10 95.3 59.0 .291 .22 .23 75.6 58.6 55.0
�1.5 .5 .011 .13 .13 95.0 40.0 .014 .13 .13 94.8 40.0 .079 .15 .17 95.8 35.8 27.1
�2.0 1.0 .016 .13 .13 95.0 42.2 .020 .13 .13 94.9 42.2 .084 .14 .18 97.1 34.5 25.7
.3:
�.5 .5 .002 .12 .12 95.2 72.9 .004 .12 .12 95.5 73.0 .159 .17 .18 86.1 72.8 64.0
�1.0 1.0 .003 .10 .10 95.4 90.3 .004 .10 .10 95.3 90.2 .403 .20 .22 55.7 90.0 87.7
�1.5 .5 .010 .13 .13 94.6 70.7 .014 .14 .13 94.7 70.6 .084 .14 .17 96.2 66.5 51.7
�2.0 1.0 .016 .14 .14 94.7 75.2 .022 .14 .14 95.0 75.1 .076 .12 .17 98.5 68.6 55.2

D:
0:
�.5 .5 .001 .12 .12 95.3 5.0 .002 .12 .12 95.2 4.9 .002 .19 .19 95.1 4.9 5.1
�1.0 1.0 .001 .10 .10 95.3 5.0 .001 .10 .10 95.3 5.0 .003 .24 .24 95.1 4.9 4.9
�1.5 .5 .010 .12 .12 95.3 5.2 .010 .12 .12 95.1 5.2 .001 .20 .19 95.0 5.0 4.6
�2.0 1.0 .014 .12 .11 95.8 5.2 .015 .12 .12 95.6 5.2 .002 .21 .21 95.2 4.8 5.0
.2:
�.5 .5 .001 .12 .12 94.9 38.4 .003 .12 .12 94.9 38.5 .112 .19 .19 90.9 38.3 32.5
�1.0 1.0 .002 .10 .10 95.3 55.6 .003 .10 .10 95.3 55.6 .292 .23 .24 76.9 55.1 52.2
�1.5 .5 .009 .13 .13 95.2 36.8 .012 .13 .13 95.0 36.8 .080 .16 .18 95.6 33.2 26.2
�2.0 1.0 .016 .14 .13 94.9 40.1 .021 .14 .13 95.0 40.0 .090 .15 .18 96.9 32.9 24.7
.3:
�.5 .5 .002 .12 .12 94.7 69.9 .004 .12 .12 94.9 69.8 .162 .18 .19 86.3 69.7 60.9
�1.0 1.0 .004 .10 .10 95.2 88.2 .006 .10 .10 95.3 88.2 .417 .22 .23 56.3 88.0 85.0
�1.5 .5 .009 .14 .14 94.7 67.6 .013 .14 .14 94.7 67.5 .091 .15 .18 95.7 63.4 49.7
�2.0 1.0 .018 .14 .14 94.7 72.0 .024 .15 .14 95.1 72.0 .090 .13 .17 98.1 65.5 53.0

R:
0:
�.5 .5 �.001 .19 .19 95.3 5.4 �.001 .19 .19 95.3 5.4 �.002 .29 .29 94.7 5.2 4.8
�1.0 1.0 .005 .15 .15 95.9 4.9 .005 .15 .15 95.9 4.9 .011 .37 .37 95.2 4.7 5.0
�1.5 .5 .024 .20 .19 95.4 5.5 .026 .20 .19 95.4 5.5 �.000 .30 .30 94.9 5.1 4.8
�2.0 1.0 .041 .20 .19 96.0 5.4 .043 .20 .19 95.8 5.5 .004 .32 .32 95.5 4.5 4.7
.4:
�.5 .5 .005 .20 .19 94.5 58.1 .009 .20 .19 95.0 58.0 .201 .27 .28 90.2 57.3 48.9
�1.0 1.0 .018 .17 .16 95.5 79.0 .022 .17 .17 95.6 79.0 .524 .31 .35 67.9 78.2 73.9
�1.5 .5 .024 .22 .22 93.9 56.6 .031 .22 .22 94.4 56.5 .087 .20 .26 98.8 48.2 29.0
�2.0 1.0 .037 .23 .23 94.0 60.2 .048 .23 .23 94.2 60.1 .066 .17 .25 99.7 46.0 27.4
.5:
�.5 .5 .010 .20 .19 94.6 77.7 .014 .20 .20 95.2 77.7 .242 .26 .28 88.3 77.1 66.9
�1.0 1.0 .021 .17 .17 95.6 93.5 .026 .18 .17 95.6 93.4 .600 .28 .34 57.1 93.1 89.4
�1.5 .5 .018 .22 .22 94.2 74.9 .027 .22 .22 94.5 74.7 .068 .18 .25 99.2 68.0 45.1
�2.0 1.0 .027 .22 .23 94.1 79.0 .039 .23 .23 94.4 78.9 .027 .15 .24 99.8 68.0 46.7

NOTE.—Each entry is based on 10,000 simulated data sets. CC p case-control analysis.

may also define in such a way that multiple hap-P(Y FH ;v)i i

lotypes are compared with a reference in a single model.9

Because haplotypes are not directly observed, it is nec-
essary to impose some restrictions, such as Hardy-Wein-
berg equilibrium (HWE), on the diplotype distribution.
For , let denote the kth possible haplotypek p 1,…,K hk

in the population and let denote the population fre-pk

quency of . Under HWE,hk

P[H p (h ,h )] p p p (k,l p 1,…,K) .i k l k l

We denote the diplotype probability function by ,P(H ;g)i

where .g p (p ,…,p )1 K

Inference on haplotype effects must properly account
for phase ambiguity. Note that

P(Y ,G ) p P(Y FH;v)P(H;g) ,�i i iH�S(G )i

where is the set of diplotypes compatible with ge-S(G )i
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Figure 1. Empirical power for detecting causal haplotype 11 at
the nominal significance level of .05 under 2-SNP models with
MAFs of .3 and .4 and with as a function of the(c ,c ) p (�2,1)L U

LD. The solid and dotted red curves correspond to the conditional
and prospective likelihoods, respectively, under the dominant model
with , whereas the solid and dotted blue curves correspondb p .2
to the conditional and prospective likelihoods, respectively, under
the recessive model with .b p .3

Table 2. Type I Error and Power at a Marker Locus Linked to a QTL

cL cU

Additive Model Dominant Model Recessive Model

b Full Cond Pros CC b Full Cond Pros CC b Full Cond Pros CC

�.5 .5 0 5.3 5.2 5.2 4.9 0 5.2 5.3 5.3 4.8 0 5.1 5.1 5.0 4.9
�1.0 1.0 5.2 5.2 5.1 4.8 5.2 5.2 5.2 4.7 5.7 5.7 5.6 4.8
�1.5 .5 4.7 4.6 4.7 5.2 4.5 4.5 4.7 5.2 5.4 5.4 5.0 5.2
�2.0 1.0 5.5 5.5 5.5 5.4 5.3 5.4 5.5 5.5 5.1 5.2 4.5 4.3
�.5 .5 .3 55.3 55.3 55.1 47.1 .3 51.9 51.8 51.6 44.1 .4 30.2 30.3 30.0 25.9
�1.0 1.0 76.0 76.0 75.8 71.0 72.7 72.7 72.3 67.9 45.0 45.0 44.4 41.2
�1.5 .5 54.0 54.0 49.9 39.0 49.9 50.0 46.3 37.4 29.5 29.4 24.5 14.2
�2.0 1.0 56.2 56.2 49.5 37.6 52.4 52.3 46.1 36.1 31.7 31.5 23.5 15.6
�.5 .5 .4 79.4 79.4 79.1 70.4 .4 75.6 75.7 75.5 67.0 .5 44.1 44.1 43.8 36.6
�1.0 1.0 93.7 93.7 93.5 91.2 92.0 92.0 91.8 88.7 63.3 63.3 62.6 56.9
�1.5 .5 75.8 75.7 72.5 55.4 72.6 72.7 69.7 53.8 42.0 41.8 36.5 20.9
�2.0 1.0 78.8 78.7 73.8 58.4 75.8 75.7 71.1 57.0 45.1 45.0 35.8 20.8

NOTE.—The MAFs of the QTL and marker locus are .05 and .06 under the additive and dominant models and are .2 and .25 under
the recessive model. The standardized LD coefficient (D′) between the two loci is .9. Each entry is based on 10,000 simulated data
sets. Full p full likelihood; Cond p conditional likelihood; Pros p prospective likelihood; CC p case-control analysis.

notype .9 Thus, the full likelihood and conditional like-Gi

lihood analogous to expressions (2) and (3) are

n N

P(Y FH;v)P(H;g) P(Y FH;v)P(H;g) (6)� � � �i i
ip1 ipn�1H�S(G ) Hi

and

n � P(Y FH;v)P(H;g)i
H�S(G )i , (7)�

ip1 �P(Y � CFH;v)P(H;g)i
H

where the second summation in expression (6) and the
summation in the denominator of expression (7) are taken
over all possible diplotypes. The maximizations of expres-
sions (6) and (7) can be performed by the expectation-
maximization (EM) algorithm or the Newton-Raphson al-
gorithm; see appendix A. The maximum-likelihood esti-
mators are approximately unbiased, normally distributed,
and statistically efficient.

Note that b pertains to genetic effect in equation (1) and
to haplotype effect in equation (5). If we are concerned
with one SNP at a time, however, the models in equations
(1) and (5) are the same. In that case, likelihoods of ex-
pressions (6) and (7) differ from expressions (2) and (3) in
that the former impose HWE and allow missing genotype
values, whereas the latter do not impose HWE and exclude
subjects with missing genotype values. Thus, the former
yield more efficient analyses, provided that HWE is a rea-
sonable assumption.

We conducted extensive simulation studies to assess the
performance of the proposed methods. We considered
both designs 1 and 2. Specifically, we generated a random
sample of individuals from the joint distribu-N p 5,000
tion of the trait value and genotype, and we identified the
subset of all the individuals whose trait values are !cL or
1cU. We then selected a random sample of indi-n p 500
viduals from that subset. By setting the genotypes of the
unselected individuals to “missing,” we obtained the data

under design 1; by deleting the unselected individuals al-
together, we obtained the data under design 2. We eval-
uated both the full-likelihood and conditional-likelihood
methods. These evaluations provided information about
the relative efficiency of using full likelihood versus con-
ditional likelihood under design 1 or, equivalently, the
relative efficiency of design 1 versus design 2.

For comparison, we also evaluated the standard meth-
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Figure 2. Empirical type I error for testing null haplotype 10 at
the nominal significance level of .05 under 2-SNP additive models
with MAFs of .3 and .4 and D′ of .75 as a function of the effect
size of causal haplotype 11. The solid and dotted red curves cor-
respond to the conditional and prospective likelihoods, respec-
tively, under , whereas the solid and dotted blue(c ,c ) p (�2,1)L U

curves correspond to the conditional and prospective likelihoods,
respectively, under . A solid black reference line(c ,c ) p (�1,1)L U

is drawn at the nominal significance level of .05.

ods, which are based on the prospective likelihoods. For
genotype-based analysis, the prospective likelihood7 is sim-
ply ; for haplotype-based analysis, the pro-n� P(Y FG ;v)i iip1

spective likelihood is the first term in expression (6).10 In
addition, we evaluated the case-control tests, which regard
the upper and lower trait values as cases and controls,
respectively.

In our first study, we generated the trait values from
equation (1) with , , and , 0.1, 0.2, 0.3,2a p 0 j p 1 b p 0
0.4, and 0.5. We set (cL,cU) to (�0.5,0.5), (�1.0,1.0),
(�1.5,0.5) or (�2.0,1.0). Under the condition that ,b p 0
the thresholds of �2.0, �1.5, �1.0, �0.5, 0.5, and 1.0 cor-
respond approximately to the 2nd, 7th, 16th, 31st, 69th,
and 84th percentiles of the trait distribution, respectively.
We considered three modes of inheritance—additive, dom-
inant, and recessive—and various values of the minor-
allele frequency (MAF). The genotypes were generated un-
der HWE, and the analyses were performed both with and
without this assumption. The results without the HWE
assumption are summarized in table 1. The results with
HWE are similar and thus omitted.

Both the full and conditional likelihoods provide (vir-
tually) unbiased estimators of genetic effects and correct
type I error. The SE estimators (SEEs) accurately reflect the
true variations, and the CIs have proper coverages. The

conditional likelihood has nearly the same power as the
full likelihood. As expected, the power is substantially
higher under the additive and dominant models than un-
der the recessive model (given the same MAF and the same
effect size). The power increases as selection becomes more
extreme. Also, the power tends to be higher when andcL

are of the same distance from the population mean (ascU

opposed to unequal distances), which implies that the op-
timal sample-size ratio between the upper and lower ends
should be ∼1:1 (as in the case of the case-control design).
In practice, the population mean may be unknown, or it
may be easier to recruit subjects with high trait values than
those with low trait values, or vice versa. Thus, it may not
be feasible to set and the same distance from the pop-c cL U

ulation mean.
In the presence of a causal variant, both the estimator

of the genetic effect and the SEE based on the prospective
likelihood are biased upward, and the coverages of the CIs
may be substantially below or above the desired levels.
The prospective likelihood appears to preserve the type I
error. The power of the prospective likelihood tends to be
lower than that of the full and conditional likelihoods,
especially when and under the recessive(c ,c ) p (�2,1)L U

mode of inheritance. When , the full and(c ,c ) p (�2,1)L U

conditional likelihoods have power of ∼75% to detect ef-
fect size of 0.3 under the additive and dominant models
with , and they have power of ∼80% to de-MAF p 0.05
tect effect size of 0.5 under the recessive model with

. By contrast, the prospective likelihood hasMAF p 0.2
!70% power in those two cases. Not surprisingly, the case-
control tests, which disregard the actual trait values, are
substantially less powerful than the proposed methods.

In the second study, we generated data in the same way
as in the first study, but we performed the analysis at a
marker locus that is in linkage disequilibrium (LD) with
the potential causal SNP. The results are shown in table 2.
The basic conclusions are the same as in the first study.
As expected, the power is decreased when testing is per-
formed at a marker locus rather than at the candidate
locus.

The third study was concerned with haplotype effects.
We considered two SNPs with varying degrees of LD. The
11 haplotype—that is, the haplotype consisting of the mi-
nor allele at each site—had a potential effect on the trait
value. We generated the trait values from equation (5) with

, , and , 0.1, 0.2, 0.3, 0.4, and 0.5. We2a p 0 j p 1 b p 0
considered three modes of inheritance: additive, domi-
nant, and recessive. HWE was assumed in both the data
generation and the analysis. We performed two types of
analyses: the first analysis compared the 11 haplotype with
the other three haplotypes, and the second analysis com-
pared haplotypes 11, 10, and 01 with haplotype 00. Some
of the testing results are displayed in figures 1 and 2.

The full and conditional likelihoods provide (virtually)
unbiased estimators of haplotype effects. The SEEs are very
accurate, and the CIs have correct coverages. The two
methods have proper control of the type I error and very
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similar power. Not surprisingly, the power increases as LD
becomes higher and as selection becomes more extreme.
The prospective likelihood yields biased estimation of hap-
lotype effects and inappropriate CIs. As shown in figure
1, the prospective likelihood is less powerful than the full
and conditional likelihoods, especially under a recessive
mode of inheritance. Furthermore, the prospective like-
lihood yields inflated type I error for testing null haplo-
types. The inflation of the type I error becomes more se-
vere as the effect of the causal haplotype increases, as
illustrated in figure 2. Again, the case-control methods9

are much less powerful than the proposed methods (data
not shown).

The two designs considered in this report are quite gen-
eral and flexible. Since the simulation studies indicated
that conditional likelihoods are nearly as efficient as full
likelihoods, one may simply adopt design 2 and retain the
trait values for the genotyped individuals only. The choices
of the selection thresholds do not require precise knowl-
edge of the trait distribution, although the efficiency of
the design will depend on which percentiles the thresh-
olds correspond to. The likelihoods presented here can be

easily modified to include a random sample, as in the
original Slatkin design,2 or to allow several selection regions
with different sampling probabilities. Although we have
focused on normally distributed traits, our methods can
be applied to any trait distributions.

We focused on the analysis of a single marker or a small
set of markers. Association studies typically involve many
markers, so a large number of tests is performed. Adjust-
ments for multiple testing can be made by permutation
or Monte Carlo methods.11

We can incorporate environmental covariates into the
models and likelihoods of this report. In the presence of
covariates, the likelihoods given in formulas (2), (3), (6),
and (7) will involve the covariate distribution. The cor-
responding numerical algorithms are more complicated
and will be presented elsewhere.
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Appendix A
Derivation of Expression (2)

The data for design 1 can be written as , where indicates, by the values 1 versus 0, whether(Y ,R ,R G )(i p 1,…,N) Ri i i i i

the ith individual is selected for genotyping. The likelihood function can be expressed asN� P(Y ,R ,R G )i i i iip1

or , which is proportional to or ,N N N NR R R 1�Ri i i i� P(Y ,R )P(R G FY ,R ) � P(Y )P(R FY )P(G FY ) � P(Y )P(G FY ) � P(Y ,G ) P(Y )i i i i i i i i i i i i i i i i iip1 ip1 ip1 ip1

because the selection probabilities are constants. This justifies expression (2).P(R FY )i i

Equivalence of Equations (3) and (4) in Estimating v

It suffices to show that the profile likelihood for v—that is, the maximum of expression (3) over g for fixed v—is
equivalent to equation (4). By defining , , and , we can writen

g p P(G p g;g) n p � I(G p g) P (v) p P(Y � CFG p g;v)g g i g iip1

the logarithm of expression (3) as . It then follows from simple algebraicn� logP(Y FG ;v) �� n logg � n log� g P (v)i i g g g gip1 g g

manipulations that the profile log-likelihood for v is , which is exactlyn� logP(Y FG ;v) �� n logP (v) �� n log (n /n)i i g g g gip1 g g

the logarithm of equation (4), up to the constant .� n log (n /n)g gg

EM Algorithm for Maximizing Expression (6)

We present an EM algorithm for the maximization of expression (6) by treating the as missing data. The complete-Hi

data log-likelihood is

N

I[H p (h ,h )]{logP[Y F(h ,h );v] � logP[(h ,h );g]} ,� � i k l i k l k lip1 k,l

where is the indicator function. Define , where is unknown for . ThenI(7) p p P[H p (h ,h )FY ,G ] G i p n � 1,…,Nikl i k l i i i

I[(h ,h ) � S(G )]P[Y F(h ,h );v]P[(h ,h );g]k l i i k l k lp p ,ikl � I[(h ,h ) � S(G )]P[Y F(h ,h );v]P[(h ,h );g)]k l i i k l k l
k,l
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where is the set of all possible diplotypes when is unknown. In the E step of the EM algorithm, we evaluateS(G ) Gi i

the at the current estimates of v and g. In the M step, we solve the equationspikl

N
� logP[Y F(h ,h );v]i k lI[(h ,h ) � S(G )]p p 0�� k l i ikl

�vip1 k,l

and

N
� logP[(h ,h );g]k lI (h ,h ) � S(G ) p p 0[ ]�� k l i ikl

�gip1 k,l

for v and g, respectively.
The linear regression model specifies that, conditional on , the quantitative trait is normally distributedH p (h ,h ) Yi k l i

with mean and variance , where is a specific function of and and where b is the correspondingT 2b Z(h ,h ) j Z(h ,h ) h hk l k l k l

set of regression parameters. Note that includes the unit component and that b corresponds to a and b ofZ(h ,h )k l

equation (5). If we are interested in comparing a particular haplotype with all others, then∗h Z(h ,h ) p [1,I(h pk l k

under the additive model, under the dominant∗ ∗ T ∗ ∗ ∗ Th ) � I(h p h )] Z(h ,h ) p [1,I(h p h ) � I(h p h ) � I(h p h p h )]l k l k l k l

model, and under the recessive model. In this case,∗ TZ(h ,h ) p [1,I(h p h p h )]k l k l

T 2�[Y � b Z(h ,h )]i k lI (h ,h ) � S(G ) exp p p[ ]k l i k l{ }22j
p p ,ikl T 2�[Y � b Z(h ,h )]i k l� I (h ,h ) � S(G ) exp p p[ ]k l i k l{ }2

k,l 2j

and the M step has explicit solutions

N �1 N

Tb p p Z(h ,h )Z(h ,h ) Y p Z(h ,h ) ,�� � �[ ] [ ]ikl k l k l i ikl k l
ip1 k,l ip1 k,l

N
22 �1 Tj p N p Y � b Z(h ,h ) ,[ ]�� ikl i k l

ip1 k,l

and

N K

�1p p N p .��k ikl
ip1 lp1

Newton-Raphson Algorithm for Maximizing Expression (7)

Under the linear regression model with thresholds and , expression (7) becomesc cL U

T 2�[Y � b Z(h ,h )]i k l2 �1/2� (2pj ) exp p pk l{ }2n (h ,h )�S(G ) 2jk l i

.�
ip1

T Tc �b Z(h ,h ) c �b Z(h ,h )U k l L k l� 1 � F �F p p[ ] [ ] k lj j{ }k,l



574 The American Journal of Human Genetics Volume 80 March 2007 www.ajhg.org

To incorporate the constraints that and into the calculations, we define andK ∗� p p 1 p 1 0(k p 1,…,K) p p p /pk k k k Kkp1

. For notational convenience, denote as . Let and . Then the log-likelihood is∗ 2h p logp j v h p (h ,…,h ) c p (b,v,h)k k 1 K�1

nn
�1 T 2 T{ }�(c) p � logv � log exp �(2v) [Y � b Z(h ,h )] � h W(h ,h )� � i k l k l2 ip1 (h ,h )�S(G )k l i

T Tc � b Z(h ,h ) c � b Z(h ,h )T U k l L k lh W(h ,h )k l�n log e 1 � F � F ,� { }[ ] [ ]� �k,l v v

where

I(h p h ) � I(h p h )k 1 l 1

W(h ,h ) p _ .k l [ ]
I(h p h ) � I(h p h )k K�1 l K�1

Let

T 2[ ]Y � b Z(h ,h )i k l
TQ (c) p exp � � h W(h ,h ) ,{ }ikl k l2v

Tc � b Z(h ,h )L k lLR (c) p ,kl �v

Tc � b Z(h ,h )U k lUR (c) p ,kl �v

and

TU L h W(h ,h )k lS(c) p 1 � F R (c) � F R (c) e .[ ] [ ]� { }kl klk,l

Also, let , and let f be the standard normal density function. Then�2 Ta p aa

Th W(h ,h )k leT 2 U U L L[Y �b Z(h ,h )]i k l n� f R (c) R (c) � f R (c) R (c)[ ] [ ]{ }2n kl kl kl kl 2v� Q (c)ikl 2v k,l��(c) n (h ,h )�S(G )k l ip � � � ,�
�v 2v � Q (c) S(c)ip1 ikl

(h ,h )�S(G )k l i

Th W(h ,h )Q (c) Z(h ,h )T U L k likl k ln e[ ] [ ] [ ]� Y � b Z(h ,h ) Z(h ,h ) n� f R (c) �f R (c){ } �i k l k l kl klv v��(c) (h ,h )�S(G ) k,lk l ip � ,�
�b � Q (c) S(c)ip1 ikl

(h ,h )�S(G )k l i

TU L h W(h ,h )k ln� 1 � F R (c) �F R (c) e W(h ,h )[ ] [ ]{ }n kl kl k l� Q (c)W(h ,h )ikl k l k,l��(c) (h ,h )�S(G )k l ip � ,�
�h � Q (c) S(c)ip1 ikl

(h ,h )�S(G )k l i
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T 4 T 2 T 2 2[Y �b Z(h ,h )] [Y �b Z(h ,h )] [Y �b Z(h ,h )]i k l i k l i k l4 3 2n � Q (c) � � Q (c)2 { }ikl ikl4v v 2v� �(c) n (h ,h )�S(G ) (h ,h )�S(G )k l i k l ip � ��2 2 { }( )�v 2v � Q (c) � Q (c)ip1 ikl ikl
(h ,h )�S(G ) (h ,h )�S(G )k l i k l i

Th W(h ,h )k leU U 3 U L L 3 L
2[ ] [ ]� f R (c) R (c) �3R (c) �f[R (c)] R (c) �3R (c)[ ][ ] { }( )kl kl kl kl kl kl 4v

k,l

�n[ S(c)

Th W(h ,h )k l 2eU U L L[ ] [ ]� f R (c) R (c) � f R (c) R (c){ }kl kl kl kl 2v
k,l� ,( ) ]S(c)

T 3 T T 2[ ] [ ]Y �b Z(h ,h ) Y �b Z(h ,h ) [ ]Y �b Z(h ,h )i k l i k l i k l
3 2 2n { }� Q (c)Z(h ,h ) � � Q (c)2 ikl k l ikl2v v 2v� �(c) (h ,h )�S(G ) (h ,h )�S(G )k l i k l ip ��[ ] { }(�v�b � Q (c) � Q (c)ip1 ikl ikl

(h ,h )�S(G ) (h ,h )�S(G )k l i k l i

T[ ]Y �b Z(h ,h )Z(h ,h )i k l k l� Q (c)ikl v
(h ,h )�S(G )k l i# { })� Q (c)ikl

(h ,h )�S(G )k l i

Th W(h ,h )k leU U 2 L L 2( ) 3/2{ [ ][ ]}� f(R (c)) R (c) � 1 �f R (c) R (c) � 1 Z(h ,h )kl kl kl kl k l2v
k,l�n [ ]( S(c)

Th W(h ,h )k leU U L L T Z(h ,h )U L h W(h ,h ) k lk l[ ] [ ]� f R (c) R (c) � f R (c) R (c){ } ( )kl kl kl kl [ ] [ ]� f R (c) �f R (c) e �kl kl vk,l 2v k,l{ }� ,{ })S(c) S(c)

T 2 T �2�1[Y �b Z(h ,h )] [Y �b Z(h ,h )]Z(h ,h )�2i k l i k l k l2n � Q (c) � v Z � Q (c){ }2 ikl iklv v� �(c) (h ,h )�S(G ) (h ,h )�S(G )k l i k l ip ��T { }( )�bb � Q (c) � Q (c)ip1 ikl ikl
(h ,h )�S(G ) (h ,h )�S(G )k l i k l i

�2
T TZ(h ,h ) Z(h ,h )U U L L h W(h ,h ) U L h W(h ,h )k l k lk l k l �2]{ }� f[R (c)]R (c) � f[R (c)]R (c) e � f[R (c)] � f[R (c)] e[ { }� �kl kl kl kl kl klv v

k,l k,l{ }�n � ,[ ]S(c) S(c)

T 2 T 2[Y �b Z(h ,h )] [Y �b Z(h ,h )]i k l i k l2 2n � Q (c)W(h ,h ) � Q (c) � Q (c)W(h ,h )2 ⎛ ⎞ikl k l ikl ikl k l2v 2v� �(c) (h ,h )�S(G ) (h ,h )�S(G ) (h ,h )�S(G )k l i k l i k l ip ��⎜ ⎟{ } { }�v�h � Q (c) � Q (c) � Q (c)ip1 ikl ikl ikl⎝ ⎠(h ,h )�S(G ) (h ,h )�S(G ) (h ,h )�S(G )k l i k l i k l i

T Th W(h ,h ) h W(h ,h )k l k le eU U L L U U L L� f R (c) R (c) � f R (c) R (c) W(h ,h ) � f R (c) R (c) � f R (c) R (c)[ ] [ ] [ ] [ ]{ } { }kl kl kl kl k l kl kl kl kl2v 2v
k,l k,l{ }�n �( S(c) S(c)

TU L h W(h ,h )k l� 1 � F R (c) �F R (c) e W(h ,h )[ ] [ ]{ }kl kl k l
k,l{ } ,)S(c)
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T[Y �b Z(h ,h )]Z(h ,h ) Ti k l k ln � Q (c) W(h ,h )2 ikl k lv� �(c) (h ,h )�S(G )k l ip�T (�b�h � Q (c)ip1 ikl
(h ,h )�S(G )k l i

T[Y �b Z(h ,h )]Z(h ,h ) Ti k l k l� Q (c) � Q (c)W(h ,h )ikl ikl k lv
(h ,h )�S(G ) (h ,h )�S(G )k l i k l i�{ } { } )� Q (c) � Q (c)ikl ikl

(h ,h )�S(G ) (h ,h )�S(G )k l i k l i

Th W(h ,h ) TZ(h ,h )U L k lk l e W(h ,h )[ ] [ ]� f R (c) �f R (c){ } k l�kl kl v
k,l�n[ S(c)

T Th W(h ,h )Z(h ,h )U L U L h W(h ,h ) Tk lk l k le[ ] [ ] [ ] [ ]� f R (c) �f R (c) � 1 � F R (c) �F R (c) e W(h ,h ){ } { }�kl kl kl kl k lv
k,l k,l� ,( ) ( ) ]S(c) S(c)

and

�2

�2n � Q (c)W(h ,h ) � Q (c)W(h ,h )2 ikl k l ikl k l� �(c) (h ,h )�S(G ) (h ,h )�S(G )k l i k l ip ��T { [ ] }�hh � Q (c) � Q (c)ip1 ikl ikl
(h ,h )�S(G ) (h ,h )�S(G )k l i k l i

TU L h W(h ,h ) �2k l� 1 � F R (c) �F R (c) e W(h ,h )[ ] [ ]{ }kl kl k l
k,l

�n ( S(c)
TU L h W(h ,h ) �2k l[ ] [ ]� 1 � F R (c) �F R (c) e W(h ,h ){ }kl kl k l

k,l� .{ } )S(c)
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